北京治白癜风疗效好的医院 https://jbk.39.net/yiyuanzaixian/bjzkbdfyy/bdf/黄金分割的由来
0.就是大名鼎鼎的黄金比率,也称之为黄金分割,黄金比率被发现的故事可以追溯到古希腊的毕达哥拉斯。传说有一天,毕达哥拉斯走在街上,听到有节奏的“叮叮当当”的声音,发现是铁匠打铁时发出的有规律的、悦耳的敲击声。他驻足倾听,伴随着铁锤的敲击,他发现敲击声与间隔产生的规律性的节奏恰好形成一个比例,并且可以用数学方程表达出来。
在进一步的探索中,毕达哥拉斯发现很多自然现象和建筑中都存在黄金比例。例如,身体比例、植物的分支模式、动物的斐波那契数列等。黄金比例也被运用于建筑、绘画、书法、音乐等艺术领域中,被认为能够给人带来最悦目的视觉和审美体验。
虽然黄金比例最初是由毕达哥拉斯发现的,但它现在的名字来自中世纪后的德国美学家泽辛,他将这个比例称为黄金分割律。这个规律的意思是,整体与较大部分之比等于较大部分与较小部分之比。无论什么物体、图形,只要它各部分的关系都与这种分割法相符,这类物体、图形就能给人最悦目、最美的印象。
黄金分割被披上神秘的外衣,意大利数学家帕乔利称其为神圣比例,并专门为此著书立说。后来,德国天文学家开普勒称黄金分割为神圣分割。如今,黄金分割被广泛应用于各个领域,包括数学、物理学、生物学、美学和音乐等。
黄金分割的神奇关系
黄金比率(GoldenRato)是源于神奇数字(FibonnacciNumberSequence)。这组数字是1、1、2、3、5、8、13、21、34、55、89、、、、、、……这组数列,便是数学上著名的“斐波那契数列”。不难发现,每个数字都是之前两个数字之和组成。
将任何一个神奇数字,除以后面的一个数字(最初几组除外),便会得出0.。
反过来,将后面的数字除以前面的数字,便会得出1.。
如隔两个数字相除,前者除以后者,便会得出接近0.的数字。
如隔一个数字相除,前者除以后者,便会得出接近0.的数字。
如隔一个数字相除,后者除以前者,便会得出接近2.的数字。
0.、0.、0.5、0.、1.0、1.、1.、1.5、1.、2.都是黄金比率,其中最常用的有0.、0.5、及0.。